Mapping Wetland Communities within the Missouri River Floodplain

Clayton Blodgett, Ronnie Lea, and David Diamond Missouri Resource Assessment Partnership School of Natural Resources University of Missouri-Columbia

Objectives

- Increase the accuracy to which wetland areas can be identified using remotely sensed information
- Pilot the use of object oriented remote sensing techniques for the mapping of wetlands

Methods

- Use a variety of satellite based image products
- Collect remotely sensed information from multiple time periods
- Develop fine scale digital elevation models
- Multi-stage classification system implemented using object oriented approach

Landsat Thematic Mapper

Collected December 31, 2002

Panchromatic and Mutlispectral data merged and resampled to 10m spatial resolution

Coincided with low water reading from Missouri River stream gage

Analyzed to determine areas that are permanently flooded

Collected April 16, 2007

Native 10m Mutlispectral data

Desire was to capture the beginning of the growing season

Analyzed to determine system and class attributes of the wetland classification

Collected August 13, 2007

Native 10m Mutlispectral data

Desire was to capture the height of the growing season

Analyzed to determine system and class attributes of the wetland classification

Radarsat-1 Fine Beam

Collected April 20, 2007

Fine Beam 8m spatial resolution

Desire was to capture vegetation structure

Analyzed to determine system and class attributes of the wetland classification

Collected 1998 by Horizon, Inc. for USACE

Break lines and mass points collected

Over 1.2 million points

25 foot postings

5m pixel size

Less than 1 foot vertical resolution

Generate objects

Multi-Stage Classification System

- Classification system consists of multiple stages
 - Wetland system classification
 - Wetland class classification
 - Water regime classification
- Incorporate above stage classifications to develop final classification

Object generation

Object classification

Object generation

Object classification

Digital Elevation Model

Filled Digital Elevation Model

Filled Digital Elevation Model subtracted from Digital Elevation Model equals Sinks

We think of this as ponding potential

SSURGO Drainage Class

Union of SSURGO drainage class and DEM developed sinks

Permanently flooded developed through object classification

Water regime created by combining permanently flooded and SSURGO/DEM data

Final wetland system classification

Final wetland class classification

Final water regime classification

Concatenate all attribute fields to arrive at wetland codes

Conclusion

- Have demonstrated that wetland types can be mapped through object oriented classification of satellite acquired remotely sensed information
- Technique shows promise and has the capability to be applied to regional/national level mapping activities